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Abstract: We discuss a recently proposed method of quantizing general non-Lagrangian

gauge theories. The method can be implemented in many different ways, in particular, it

can employ a conversion procedure that turns an original non-Lagrangian field theory in d

dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The

method involves, besides the classical equations of motion, one more geometric ingredient

called the Lagrange anchor. Different Lagrange anchors result in different quantizations

of one and the same classical theory. Given the classical equations of motion and La-

grange anchor as input data, a new procedure, called the augmentation, is proposed to

quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally

non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time

manifold. The augmented theory is not generally equivalent to the original one as it has

more physical degrees of freedom than the original theory. However, the extra degrees of

freedom are factorized out in a certain regular way both at classical and quantum lev-

els. The general techniques are exemplified by quantizing two non-Lagrangian models of

physical interest.
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1. Introduction

Classical dynamics can be consistently formulated in terms of equations of motion alone.

The variational principle, being a useful tool for studying various aspects of classical dy-

namics, is not needed to have the classical theory defined as such. However, to promote

the classical dynamics to quantum level, it is insufficient to know only the equations of

motion, one or another extra structure is needed. If the quantum theory is supposed to

be formulated in the language of Feynman’s path integrals, it is the action functional that

can serve as the additional ingredient needed for quantization. On the other hand, any
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Lagrangian equations of motion can always be brought to a (constrained) Hamiltonian

form that makes possible applying canonical quantization. Furthermore, the method of

deformation quantization applies to the Hamiltonian systems even though the underlying

Poisson bracket is degenerate [1] (in which case the Hamilton equations can have no vari-

ational formulation). As it has been recently found [2, 3], the deformation quantization

can also be implemented under far less restrictive conditions on the equations of motion

than the requirement to be Hamiltonian. Roughly speaking, the phase-space evolution

flow is not required to be Hamiltonian: It is sufficient if the evolution preserves the Poisson

bracket modulo constraints and gauge transformations. The bracket, in its turn, is also

required to satisfy the Jacobi identity in a weak sense, i.e., modulo constraints and gauge

transformations. For accurate definitions, see [2, 3].

So, the deformation quantization has progressed in recent years reaching far beyond the

range of theories admitting variational principle for equations of motion. At the same time,

the methods of constructing the partition functions1 dating back to Feynman, Schwinger

and Dyson, and being now developed in full generality for arbitrary Lagrangian gauge

theories [4 – 6], have not made much progress in the class of theories having no action

functional. Until recently, no general method has been known to path-integral quantize a

non-Lagrangian theory as it was not clear what might be a generalization of the familiar

Schwinger-Dyson’s equation in the situation where no Lagrangian formulation is possible

for the classical equations of motion.

In our recent papers [7, 8], we have identified a general structure, called the Lagrange

anchor, which is determinative for the quantization in terms of partition functions in the

same sense as the Poisson bracket defines deformation quantization in terms of a star

product. The Lagrange anchor is a geometric object that can be interpreted in many

different ways. In particular, one could say that the Lagrange anchor is related to the

canonical anti-bracket of the Batalin-Vilkovisky formalism [5] much like a generic (i.e.,

possibly degenerate and non-constant rank) Poisson bracket is related to the canonical

Poisson bracket. The anchor is also required to satisfy certain compatibility conditions

involving equations of motion. In Lagrangian theory, these conditions are automatically

satisfied for the canonical anti-bracket in consequence of the fact that the equations of

motion are variations of the action functional. If the anchor is invertible, these compatibility

conditions ensure existence of the equivalent Lagrangian formulation. It turns out that the

partition function can still be constructed by making use only of the equations of motion and

the Lagrange anchor, even though the latter is degenerate, defining no action functional.

The next section contains an accurate definition of the Lagrange anchor and discussion of

its properties.

By now two procedures have been worked out to construct partition functions for

general non-Lagrangian theories. The first one [7] suggests a conversion of the original

non-Lagrangian field theory in d dimensions into an equivalent (d + 1)-dimensional La-

grangian topological theory which can then be quantized by the standard BV method.

The conversion procedure is quite ambiguous and essentially depends on the choice of the

1In the following we will also use the term probability amplitude as a synonym for the partition function.
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Lagrange anchor. If the anchor was invertible (that assumes implicitly the existence of

some action for the original dynamics), the path integral can be explicitly taken in the

bulk of the topological theory resulting in Feynman’s partition function for original action.

With a general (non-invertible) anchor, the answer for the partition function cannot be

reduced to the canonical form, but it remains fully consistent and allows quite natural

physical interpretation [8]. If the anchor is chosen to be zero, the partition function will

correspond to the classical transition amplitude [9]. The second method to quantize a

classical theory with non-Lagrangian equations of motion [8] suggests a nontrivial gener-

alization of the Schwinger-Dyson equation that any partition function must satisfy. This

equation, involving classical equations of motion and the Lagrange anchor, reduces to the

BV quantum master equation whenever the anchor is invertible.

In this paper, we propose an alternative procedure of constructing partition functions

for general dynamical systems. This procedure starts with the same input data: classical

equations of motion and the Lagrange anchor, but it exploits quite different idea and tech-

nology. We call this procedure an augmentation because it is motivated by a widespread

view that either a non-Lagrangian system can be reshaped into an equivalent Lagrangian

model in an appropriately extended configuration space, or it describes an effective dy-

namics emerging from a Lagrangian theory after averaging over some degrees of freedom

or their exclusion from the equations of motion. So, the intuitive intention about quan-

tizing a non-Lagrangian theory is to augment it first to a Lagrangian one, and then the

augmented theory can be quantized in the usual way. No general method is known to

date to equivalently reformulate any given non-Lagrangian model as a Lagrangian one by

adding a finite number of new fields. We propose a uniform procedure to construct an

augmented Lagrangian theory for any (non-)Lagrangian dynamics, which is not however

an equivalent reformulation. The augmented theory may have, in principle, more degrees

of freedom than the original model, but classically, the original dynamics are easily singled

out by imposing appropriate boundary conditions on the extra fields. These boundary

conditions guarantee that the original fields evolve precisely in the same way as in the

original theory, while new fields do not evolve at all. This reduction mechanism always

restores the original dynamics in the augmented theory including the case where the orig-

inal theory is Lagrangian. Quantizing the augmented Lagrangian system by conventional

BV procedure and integrating the new fields out in the path integral, one gets the original

(not necessarily Lagrangian) dynamics quantized. If the original theory is Lagrangian, the

integral can be taken explicitly over the augmentation fields with corresponding boundary

conditions, and the partition function obtained in this way will coincide with that con-

structed from the BV master action for the original Lagrangian. If the original theory

is not Lagrangian, the constructed partition function is still correct that can be seen in

several ways, although it cannot be represented anymore as an exponential of any (local

or non-local) action functional.

Let us also comment on an essential distinction between the augmentation idea we use

to quantize non-Lagrangian theories and somewhat similar concept of “auxiliary fields” [10].

The fields are usually understood as auxiliary when they are introduced to extend the

dynamics in such a way that the extended classical theory remains fully equivalent to the
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original one. In particular this means that the number of independent initial data for

Cauchy problem remains the same as in the original theory. In contrast to introducing the

auxiliary fields, the augmentation procedure results in a theory that has more degrees of

freedom than the original one. The extra dynamics are eliminated, however, by imposing

zero initial and/or boundary conditions on the augmentation fields. At quantum level,

these conditions provide the absence of the “augmenting particles” in in- and out-states of

the quantum system. It might be relevant to mention that no regular procedure is known

yet for introducing auxiliary fields in such a way as to convert any non-Lagrangian theory

into an equivalent Lagrangian one. In some specific models the way of introducing auxiliary

fields is known, although it often happens that the restrictions are to be imposed strongly

limiting the admissible form of equations of motion.2 In contrast, the augmentation is

a regular procedure which always works well, given equations of motion and Lagrange

anchor.

The paper is organized as follows. To make the paper self-contained, we review some

recent developments in path-integral quantization of non-Lagrangian theories that includes

basic definitions and some relevant statements from [7, 8]. In section 2, we set up notation

and explain some basic facts concerning the general structure of not necessarily Lagrangian

gauge systems. We recall the notion of Lagrange structure, which contains the Lagrange

anchor as a key ingredient, and put it in the context of S∞-algebras. The corresponding

Subsection 2.4 is addressed to the readership familiar with basics of strongly homotopy

algebras, others may just omit this subsection. The paper can be further understood

without knowing the concept of S∞-algebras, although this concept provides a natural

homological insight into the quantization problem of non-Lagrangian dynamics. In section

3, we describe a BRST complex, which can be assigned to any (non-)Lagrangian gauge

system. As input data, this complex involves the original equations of motion, generators

of gauge identities and gauge symmetries, and the Lagrange anchor. At first, we define

the ambient Poisson manifold that hosts this BRST complex and construct the BRST

charge by homological perturbation theory. Further, we show that the BRST cohomology

classes precisely correspond to the physical observables of the original (non-)Lagrangian

theory. We also give an important interpretation of this BRST complex as that resulting

from the BFV-BRST quantization of some constrained Hamiltonian system on the phase

space of original fields and their sources. Section 4 is devoted to the quantization of

the BRST complex. Quantizing the ambient Poisson manifold, we define the quantum

BRST cohomology and present the generalized Schwinger-Dyson equation for the partition

function of a (non-)Lagrangian gauge theory. This equation is shown to have a unique

solution, which can be written down in a closed path-integral form.

Section 5 contains the main results of the paper. Namely, in section 5.1. we define

the augmented BRST complex, which is build on the original BRST complex and carries

all the information about the augmented theory. In section 5.2. we unfold the structure

2For example, in higher-spin field theories, the auxiliary fields can be introduced converting a non-

Lagrangian model into Lagrangian one unless no interaction has been switched on, even though the con-

sistent equations of motion with interaction are know for many years, see [11] for a review and further

references
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of the augmented BRST charge by interpreting it in terms of equations of motion, gauge

symmetry and Noether identity generators. As the Lagrange anchor behind the augmented

theory is always nondegenerate (whatever the original anchor), the augmented partition

function has the standard Feynman’s form. Moreover, the corresponding action functional

is proved to possess the property of space-time locality provided the original equations of

motion and the Lagrange anchor do so. Finally, in section 5.3. we present an alternative

path-integral representation for the quantum averages of the original physical observables

in terms of the augmented action functional.

In section 6, we apply the augmentation procedure to quantize two non-Lagrangian

field theories: Maxwell electrodynamics with monopoles and self-dual p-forms. These

models are known to admit no Lagrangian formulation. However, we have found non-trivial

(degenerate) Lagrange anchors for these theories. Making use of the anchors, we apply the

augmentation method to construct manifestly Poincaré invariant partition functions for

both the models.

2. Lagrange structure and S∞-algebras

2.1 Classical dynamics

In field theory one usually deals with the space Y X of all smooth maps from a space-time

manifold X to a target manifold Y . The atlases of coordinate charts on X and Y define

then a natural atlas on Y X such that each map x : X → Y is specified locally by a set of

smooth fields xi, the coordinates on the infinite-dimensional manifold Y X . Hereafter we

use De Witt’s condensed notation [4], whereby the superindex “i” comprises both the local

coordinates on X and the discrete indices labelling the components of the field x. As usual,

the superindex repeated implies summation over the discrete indices and integration over

the space-time coordinates w.r.t. an appropriate measure on X. The partial derivatives

∂i = ∂/∂xi are understood as variational ones.

In the context of local field theory, the space Y X is known as the space of all histories

and the true histories are specified by a set of PDE’s

Ta(x) = 0 . (2.1)

Here we do not assume the field equations to come from the least action principle, hence

the indices i and a, labelling the fields and equations, may run through completely different

sets. In the case where X is a manifold with boundary, eqs. (2.1) are also supplemented

with a suitable set of boundary conditions. Usually, the boundary conditions specify the

values of fields and/or their derivatives up to some fixed order. Varying these values,

collectively called the boundary data, one gets a family of different solutions to eqs. (2.1).

For our purposes it is convenient to think of T = {Ta(x)} as a section of some vector

bundle E → M over subspace of all fields M ⊂ Y X with given boundary data. Then the

set of all true histories Σ belonging to M is identified with zero locus of T ∈ Γ(E):

Σ = {x ∈ M | T (x) = 0 } . (2.2)
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Using the physical terminology, we refer to Σ as the shell. Under the standard regularity

conditions [6], Σ ⊂ M is a smooth submanifold associated with an orbit of gauge symmetry

transformations (see eq. (2.9) below); in the absence of gauge symmetries the shell Σ is a

single point of M . In the following we will always assume Σ to be a connected submanifold

for each choice of boundary data.

Thus, the classical dynamics are completely specified by a section T of some vector

bundle E → M over the space of all histories subject to boundary conditions. For this

reason we call E the dynamics bundle.

2.2 Regularity conditions

To avoid pathological examples, some regularity conditions are usually imposed on a clas-

sical system. To formulate these conditions in an explicitly covariant way, let us introduce

an arbitrary connection ∇ on E and define the section

J = ∇T ∈ Γ(T ∗M ⊗ E) (2.3)

This section, in turn, defines the M -bundle morphism 3

J : TM → E , (2.4)

which is not necessarily of constant rank.

Definition 1. A classical system (E , T ) is said to be regular of type (m,n), if there exists

a finite sequence of vector bundles Ek → M and M -bundle morphisms

0 → E−m→· · · → E−1
R

−→ TM
J

−→ E
Z

−→ E1→· · ·→En → 0 (2.5)

satisfying conditions:

(a) there is a tubular neighbourhood U ⊂ M of Σ such that all the morphisms (2.5) have

constant ranks over U ;

(b) upon restriction to Σ, the chain (2.5) makes an exact sequence.

This definition has several important corollaries elucidating its meaning:

Corollary 1. The shell Σ ⊂ M is a smooth submanifold with TΣ = ImR|Σ.

Corollary 2. For any vector bundle V → M and a section K ∈ Γ(V) vanishing on Σ ⊂ M ,

there is a smooth section W ∈ Γ(E∗ ⊗ V) such that

K = 〈T,W 〉 , (2.6)

where the triangle brackets denote contraction of T and W . Informally speaking, any on-

shell vanishing section is proportional to T .

3To simplify notation, we will not distinguish between an M -bundle morphism H : E → E ′, the induced

homomorphism Γ(H) : Γ(E) → Γ(E ′) on sections, and the associated section eH ∈ Γ(E∗ ⊗ E ′) ' Mor(E ,E ′),

denoting all these maps by one and the same letter H .
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Corollary 3. When exist, the morphisms (2.5) are not unique off shell. Thinking of these

morphisms as the sections of the corresponding vector bundles, one can add to them any

sections vanishing on Σ, leaving the properties (a),(b) unaffected. In particular, by making

a shift

Z → Z + Z0 , Z0|Σ = 0 , (2.7)

if necessary, we can always assume that T ∈ ker Z. In view of the previous remark, the

section Z0 is proportional to T .

Corollary 4. In the definition above we can pass from the sequence (2.5) to the transpose

one by replacing each vector bundle with its dual and inverting all the arrows. The transpose

sequence will meet the same conditions (a),(b) as the original one.

In this paper we deal mostly with the quantization of regular (1, 1)-type Lagrange

structures associated to the four-term sequences

0 → F
R

−→ TM
J

−→ E
Z

−→ G → 0 . (2.8)

The on-shell exactness at TM suggests that for any vector field V ∈ Γ(TM) obeying

condition ∇V T |Σ = 0 there exists a section ε ∈ Γ(F) such that V = R(ε). Combining this

with Corollary 2, we can write

Ri
α∇iTa = U b

αaTb (2.9)

for some U ∈ Γ(E ⊗E∗⊗F). Here indices a, i, α label the components of the corresponding

sections w.r.t. to some frames {eα} ∈ Γ(F|U ), {ea} ∈ Γ(E|U ), and {∂i} ∈ Γ(TU) associated

with a trivializing coordinate chart U ⊂ M . Let {eA} be a frame in G over U . In view of

Corollary 3 the on-shell exactness at term E implies then

Za
ATa = 0 , (2.10)

if Z was chosen in an appropriate way. Relations (2.9) and (2.10) have a straightforward

interpretation in terms of constrained dynamics [6]: the homomorphism R is identified

with an irreducible set of gauge symmetry generators for the classical equations of motion

T = 0, while the homomorphism Z generates a set of independent Noether’s identities.

Having in mind this interpretation, we term F and G the gauge algebra bundle and the

Noether identity bundle, respectively. Notice that the irreducibility of the gauge symme-

try generators is provided by the on-shell exactness of (2.8) at F , while irreducibility of

Noether’s identity generators follows from the on-shell exactness of the transpose of (2.8)

at G∗.

This interpretation of homomorphisms R and Z applies to the general regular systems

of type (m,n), except that the bases of the gauge algebra and Noether’s identity generators

may be overcomplete (reducible). A general (n + 1,m + 1)-type gauge theory with n > 0

and/or m > 0 corresponds to the case of n-times reducible generators of gauge transfor-

mations and/or m-times reducible generators of Noether’s identities. The theories of type

(0, 0) are described by linearly independent equations of motion having a unique solution.
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2.3 Lagrange structure

In the context of covariant path-integral quantization, the passage from classical to quan-

tum theory involves, besides classical equations of motion, one more geometric ingredient

called the Lagrange structure [7].

Definition 2. Given a classical system (E , T ), a Lagrange structure is an R-linear map

dE : Γ(∧nE) → Γ(∧n+1E) obeying two conditions:

(i) dE is a derivation of degree 1, i.e.,

dE(A ∧ B) = dEA ∧ B + (−1)nA ∧ dEB ,

for any A ∈ Γ(∧nE) and B ∈ Γ(∧•E);

(ii) dET = 0 .

Here we identify Γ(∧0E) with C∞(M).

Due to the Leibnitz rule (i), in each trivializing chart U ⊂ M the operator dE is

completely specified by its action on the coordinate functions xi and the basis sections ea

of E|U :

dExi = V i
a (x)ea , dEea =

1

2
Ca

bc(x)eb ∧ ec . (2.11)

Applying dE to the section T = Tae
a, one can see that the property (ii) is equivalent to

the following structure relations:

dET = (V i
a∂iTb − Cc

abTc)e
a ∧ eb = 0 . (2.12)

The first relation in (2.11) means also that dE defines a bundle homomorphism V : E∗ →

TM . The section V ∈ Γ(E ⊗ TM) is called the Lagrange anchor.

Definition 3. A Lagrange structure (E , T, dE ) is said to be regular at p ∈ M , if there

exists a vicinity U ⊂ M of p such that the M -bundle morphism

R ⊕ V : E−1 ⊕ E∗ → TM (2.13)

has a constant rank4 r over U . The number r is called the rank of Lagrange structure at

p ∈ M . The Lagrange structure is said to be complete at p, if the homomorphism (2.13)

is surjective on U . Finally, we say that the Lagrange structure is regular (or complete), if

it is regular (or complete) at any point of M .

Remark 1. In view of Definition 1, the regularity of the Lagrange structure at p ∈ Σ is

equivalent to the regularity at p of the anchor morphism V : E∗ → TM , i.e., there exists a

sufficiently small vicinity U ⊂ M of p ∈ Σ such that V has constant rank over U .

4Of course, in the context of infinite-dimensional manifolds the notion of rank needs clarification. An

appropriate definition can be done, for example, in the case of local field theories.
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Remark 2. In the context of quasiclassical quantization we will deal with in sequel, it is

also appropriate to introduce the notions of weakly regular and weakly complete Lagrange

structures by requiring regularity and completeness only for the points of Σ.

Theorem 1 (Splitting theorem [7]) Let p ∈ M be a regular point of the Lagrange struc-

ture (E , T, dE ), then there is a coordinate system (y1, . . . , yr, z1, . . . , zk) centered at p to-

gether with a set of local functions S(y), E1(y), . . . , Ek(y) such that equations Ta(y, z) = 0

are equivalent to
∂S(y)

∂yI
= 0 , zJ = EJ(y) ,

and the Lagrange anchor V = (V J , VI) is given by the abelian vector distribution

V J = 0 , VI =
∂

∂yI
+

∂EJ

∂yI

∂

∂zJ
.

Here the number r is the rank of the Lagrange structure at p ∈ M .

In case r < dimM , it is natural to call S(y) a partial action.

Although the theorem above ensures the split of local coordinates into “Lagrangian” y’s

and “non-Lagrangian” z’s, it is by no means necessary to explicitly perform this splitting

in order to develop the theory further. The subsequent formulas do not involve such a

split. Moreover, the method is insensitive to the rank of the Lagrange anchor producing a

well-defined path-integral quantization in the irregular case as well.

Example 1. Let us illustrate the definitions above by an example of a Lagrangian gauge

theory with action S(x). The equations of motion read

T ≡ dS(x) = 0 , (2.14)

so that the dynamics bundle E is given by the cotangent bundle T ∗M of the space of all

histories. The canonical Lagrange structure, resulting in standard quantization, is given

by the exterior differential d : Γ(∧nT ∗M) → Γ(∧n+1T ∗M). The defining condition for the

Lagrange structure (2.12) takes the form

dT = d 2S ≡ 0. (2.15)

The Lagrange anchor is defined by the identical homomorphism

V = id : TM → TM , (2.16)

and hence the Lagrange structure is regular and complete. Suppose the action S is gauge in-

variant. Then there exist a set of gauge algebra generators defining an M -bundle morphism

R : F → TM such that

〈R(ε), dS〉 = 0 (2.17)

for any gauge parameter ε ∈ Γ(F). So, equations (2.14) appear to be linearly dependent.

Differentiating the last identity w.r.t. some connection ∇ on F⊗TM , we arrive at Rel. (2.9)

with U j
αi = ∇iR

j
α.

– 9 –
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Thus, we see that for ordinary Lagrangian gauge theories the dynamics bundle coincides

with the cotangent bundle (E = T ∗M), the Noether identity bundle coincides with the gauge

algebra bundle (F = G), and the generators of gauge symmetry coincide with the generators

of Noether’s identities (R = Z). For a general regular system of type (1, 1) neither of these

coincidences should necessarily occur. For instance, it is possible to have gauge invariant,

but linearly independent equations of motion; and conversely, a theory may have linearly

dependent equations of motion without gauge symmetry.

2.4 S∞-algebras

Recall that the conventional BV formalism for a Lagrangian gauge theory starts by intro-

ducing ghost fields to every gauge symmetry, and then an antifield for every field. The space

of all fields and antifields is endowed with the canonical odd Poisson bracket ( · , · ) and the

original action functional is extended to the master action S defined as a proper solution

to the classical master equation (S, S) = 0. The classical BRST differential Q = (S, ·),

being a nilpotent derivation of the odd Poisson algebra of functions, incorporates then

both the dynamical equations and the gauge algebra structure. Thus, the odd Poisson ge-

ometry provide a natural framework for the BV field-antifield formalism.5 In [7], we have

shown that the quantization of general non-Lagrangian gauge theories call for a strongly

homotopical version of the odd Poisson algebras.

Definition 4. An S∞-algebra (S for Schouten) is a Z2-graded, supercommutative, and

associative algebra A endowed with a sequence of odd linear maps Sn : A⊗n → A such that

(a) Sn(. . . , ak, ak+1, . . .) = (−1)ε(ak)ε(ak+1)Sn(. . . , ak+1, ak, . . .),

ε(a) being the parity of a homogeneous element a ∈ A.

(b) a 7→ Sn(a1, . . . , an−1, a) is a derivation of A of the parity

1 +
∑n−1

k=1 ε(ak) (mod 2).

(c) For all n ≥ 0,

∑

k+l=n

∑

(k,l)−shufle

(−1)εSl+1(Sk(aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(k+l)) = 0 ,

where (−1)ε is the natural sign prescribed by the sign rule for permutation of homo-

geneous elements a1, . . . , an ∈ A.

Recall that a (k, l)-shuffle is a permutation of indices 1, 2, . . . , k + l satisfying σ(1) < · · · <

σ(k) and σ(k + 1) < · · · < σ(k + l).

When S0 = 0 we speak about a flat S∞-algebra. In that case S1 : A → A is a

differential with (S1)
2 = 0, and S2 induces an odd Poisson structure on the cohomology of

5In the physical literature the odd Poisson manifolds are usually called anti-Poisson manifolds. Corre-

spondingly, the odd Poisson brackets are referred to as antibrackets. On the other hand, in mathematics

the odd Poisson algebras (brackets) are also known under the names of Schouten or Gerstenhaber algebras

(brackets).
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S1. An odd Poisson algebra can be regarded as an S∞-algebra with bracket S2 : A⊗A → A

and all other Sk = 0. In fact, properties (a) and (c) characterize L∞-algebras. We refer

to [12] for a recent discussion of S∞-algebras.

It turns out that any Lagrange structure of type (m,n) gives rise to a flat S∞-algebra

on the supercommutative algebra of sections

A = Γ
(
∧• E ⊗

m⊗

k=1

S•(ΠkE−k) ⊗
n⊗

l=1

S•(Πl+1El)
)
. (2.18)

Here S• stands for symmetric tensor powers (in the Z2-graded sense) and Π denotes the

parity reversion operation, i.e., ΠE is a vector bundle over M whose fibers are odd linear

spaces. By definition, Π2 = id and S•(ΠE) = ∧•E .

In the next section, applying the machinery of BRST theory, we give an explicit de-

scription for S∞-algebras associated with (1, 1)-type Lagrange structures. Extension to the

general Lagrange structures is straightforward.

3. BRST complex

3.1 An ambient symplectic supermanifold

Let (E , T, dE ) be a regular Lagrange structure corresponding to the four-term sequen-

ce (2.8). Following the general line of ideas of BRST theory, we realize M — the space of

all histories — as the body of a graded supermanifold N . The latter is chosen to be the

total space of the following graded vector bundle over M :

Π(F ⊕ F∗) ⊕ T ∗M ⊕ Π(E ⊕ E∗) ⊕ (G ⊕ G∗) . (3.1)

Here F , E , and G are the bundles of gauge algebra, dynamical equations and the Noether

identities, respectively. The base M is imbedded into (3.1) as the zero section. In addition

to the Grassman parity the fibers of (3.1) are graded by ghost number valued in integers.

To avoid cumbersome sign factors, we will assume the base M to be an ordinary (even)

manifold that corresponds to the case of gauge systems without fermionic degrees of free-

dom. Then the Grassman parities of fibers correlate with their ghost numbers in a rather

simple way: the even coordinates have even ghost numbers, while the odd coordinates have

odd ghost numbers. The supermanifold N is also endowed with an N-grading called the

momentum degree (or m-degree for short).

It is convenient to arrange the information about all the aforementioned gradings of

local coordinates in a single table 1.

Upon splitting all the coordinates into the “position coordinates” ϕI = (xi, cα, ηa, ξA)

and “momenta” ϕ̄J = (x̄i, c̄α, η̄a, ξ̄A) the assignment of gradings becomes easy to see

gh(ϕ̄I) = −gh(ϕI) , ε(ϕ̄I) = ε(ϕI) ,

Deg(ϕ̄I) = 1 , Deg(ϕI) = 0 .
(3.2)
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base and fibers M T ∗M F F∗ E E∗ G G∗

local coordinates xi x̄j cα c̄β ηa η̄b ξA ξ̄B

ε = Grassman parity 0 0 1 1 1 1 0 0

gh = ghost number 0 0 1 -1 -1 1 -2 2

Deg = momentum degree 0 1 0 1 0 1 0 1

Table 1: The gradings of local coordinates on N .

Let us denote by C∞(N ) the supercommutative algebra of “smooth functions” on N .

By definition, the generic element of C∞(N ) is given by a formal power series in the fiber

coordinates with coefficients in C∞(M).

Fixing a linear connection ∇ = ∇F ⊕ ∇E ⊕∇G on F ⊕ E ⊕ G, we endow N with the

exact symplectic structure

ω = d(x̄idxi + c̄α∇cα + η̄a∇ηa + ξ̄A∇ξA) , (3.3)

where

∇cα = dcα + dxiΓα
iβcβ , (3.4)

and similar expressions are assumed for covariant differentials of η’s and ξ’s. Thus, C∞(N )

becomes a Poisson algebra; the nonvanishing Poisson brackets of local coordinates are given

by
{η̄b, ηa} = δb

a , {x̄i, ηa} = Γb
iaηb , {x̄i, η̄

b} = −Γb
iaη̄

a ,

{c̄α, cβ} = δβ
α , {x̄i, c

α} = Γα
iβcβ , {x̄i, c̄β} = −Γα

iβ c̄α ,

{ξ̄A, ξB} = δA
B , {x̄i, ξA} = ΓB

iAξB , {x̄i, ξ̄
A} = −ΓA

iB ξ̄B ,

{x̄i, x
j} = δj

i , {x̄i, x̄j} = Rb
ijaη̄

aηb+R
β
ijαcαc̄β + RB

ijAξ̄AξB .

(3.5)

Here the structure functions determining the Poisson brackets of x̄i and x̄j are just the

components of the curvature tensor of ∇.

Notice that the equations ϕ̄I = 0 define the Lagrangian submanifold

L = Π(F ⊕ E) ⊕ G ⊂ N , (3.6)

and the supercommutative algebra of functions C∞(L) is naturally isomorphic to the al-

gebra (2.18) with m = n = 1.

3.2 BRST charge

It turns out that all the ingredients of a classical gauge system as well as a Lagrange

structure can be naturally incorporated into a single object Ω, the classical BRST charge.6

By definition [7], the BRST charge Ω is an element of the Poisson algebra C∞(N ) such

that

(i) ε(Ω) = 1 , gh(Ω) = 1, Deg(Ω) > 0;

6Relevance of this terminology is explained in the next subsection.
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(ii) Ω = η̄aTa + cαRi
αx̄i + ξ̄AZa

Aηa + η̄aV i
a x̄i + · · · ;

(iii) {Ω,Ω} = 0 .

The dots in (ii) refer to the terms which are at least linear in ηa and c̄α or at least

quadratic in x̄i. Equation (iii) is known as the (classical) master equation. Conditions

(i)-(iii) determine Ω up to a canonical transformation of C∞(N ). The existence of Ω is

proved by standard tools of homological perturbation theory [7].

It is instructive to consider expansion of Ω in powers of momenta. In view of (i) the

expansion starts with terms linear in ϕ̄, i.e.,

Ω =

∞∑

k=1

Ωk , Deg(Ωk) = k . (3.7)

On substituting (3.7) into the master equation (iii), we get

{Ω1,Ω1} = 0 , {Ω1,Ω2} = 0 , {Ω2,Ω2} = −2{Ω2,Ω3} , etc . (3.8)

We see that the leading term Ω1 = ΩI ϕ̄I gives rise to the homological vector field on L,

Q ≡ ΩI ∂

∂ϕI
= Ta

∂

∂ηa
+ cαRi

α

∂

∂xi
+ ηaZ

a
A

∂

∂ξA
+ · · · , (3.9)

which carries all the information about the classical system itself, with no regard to the

Lagrange structure.7 Evaluating the nilpotency condition Q2 = 0 to lowest order in fiber

coordinates, one immediately recovers Rels. (2.9), (2.10) characterizing T = 0 as a set

of gauge invariant and linearly dependent equations of motion, with R and Z being the

generators of gauge transformations and Noether identities, respectively.

The Lagrange anchor V : E∗ → TM defining the Lagrange structure for the classical

system (3.9) enters the next term

Ω2 = ΩIJ(ϕ)ϕ̄I ϕ̄J = η̄aV i
a x̄i + · · · . (3.10)

Relations (3.8) characterize Ω2 as a weak anti-Poisson structure on L, i.e., Q-invariant, odd

bivector field satisfying the Jacobi identity up to homotopy. The corresponding “weak”

antibracket reads

(a, b) ≡ {{Ω2, a}, b} , a, b ∈ C∞(L) . (3.11)

Examining the Jacobi identity for this bracket, one finds

(a, (b, c)) + (−1)ε(b)ε(c)((a, c), b) + (−1)ε(a)(ε(b)+ε(c))((b, c), a) =

−S3(Qa, b, c) − (−1)ε(a)ε(b)S3(a,Qb, c) − (−1)(ε(a)+ε(b))ε(c)S3(a, b,Qc)

−QS3(a, b, c) ,

(3.12)

where we have introduced the following notation:

Sn(a1, a2, . . . , an) ≡ {. . . {{Ωn, a1}a2}, . . . , an} , ak ∈ C∞(L) . (3.13)

7In the usual BV theory the operator Q is known as the classical BRST differential [6, §8.5].
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Evidently, the weak antibracket (3.11) induces a genuine antibracket in the Q-cohomology.

It is Rel. (3.13) that defines the aforementioned S∞-structure on the supercommutative

algebra C∞(L): By definition, each Sn is a symmetric multi-differentiation of C∞(L) and

the generalized Jacobi identities for the collection of maps {Sn} readily follow from the

master equation {Ω,Ω} = 0 for the BRST charge. Since Deg (Ω) > 0, this S∞-algebra is

flat.

3.3 Hamiltonian interpretation

In the conventional BFV approach, the BRST charge arises as a tool for quantizing first-

class constrained Hamiltonian systems. A glance at table 1 is enough to see that the

spectrum of ghost numbers corresponds to that of the BFV-BRST formalism for a first-class

constrained Hamiltonian system with linearly dependent constraints [6]. In order to make

this interpretation more explicit, let us combine the local coordinates with ghost numbers

1 and −1 into the ghost coordinates CI = (η̄a, cα) and ghost momenta P̄I = (ηa, c̄α),

respectively. In this notation the above BRST charge (3.7) can be rewritten as

Ω = CIΘI(x, x̄) + P̄IΞ
I
A(x, x̄)ξA +

1

2
P̄KUK

IJ(x, x̄)CJCI + o(P̄2, ξ2) , (3.14)

where the expansion coefficients ΘI = (T̃a, R̃α) and ΞI
A = (Z̃a

A, Zα
A), playing the role of

first-class constraints and their null-vectors, are given by the formal power series in x̄’s:

T̃a(x, x̄) = Ta(x) + V i
a (x)x̄i + o(x̄2) ,

R̃α(x, x̄) = Ri
α(x)x̄i + o(x̄2) ,

Z̃a
A(x, x̄) = Za

A(x) + o(x̄) .

(3.15)

To lowest order in C’s, eqs. (3.8) reproduce the standard involution relations for a set of

reducible first-class constraints w.r.t. the canonical Poisson bracket on T ∗M :

{ΘI ,ΘJ} = UK
IJΘK , ΞI

AΘI = 0 . (3.16)

From the regularity condition it follows immediately that the number of independent first-

class constraints ΘI ≈ 0 is equal to dimM . In physical terms, one can interpret this fact

concluding that the Hamiltonian system under consideration has no physical degrees of

freedom. From the geometrical viewpoint, this implies that the equations ΘI = 0 define a

Lagrangian submanifold L ⊂ T ∗M ; more accurately, L is a formal Lagrangian submanifold

as we are not concerned with convergence of the formal series (3.15).

One can also regard the constraints ΘI ≈ 0 as a formal deformation of those given

by the leading terms of expansions (3.15) in the “direction” of the Lagrange anchor V .

From this standpoint, the Lagrange structure is just the infinitesimal of deformation of the

Lagrangian submanifold L0 ⊂ T ∗M defined by the “bare” first-class constraints Ta(x) ≈ 0

and Ri
α(x)x̄i ≈ 0.

Associated with the first-class constraints ΘI ≈ 0 is the Hamiltonian action on the

cotangent bundle of the space of all histories

S[λ, x, x̄] =

∫ t2

t1

dt(x̄iẋ
i − λIΘI(x, x̄)) . (3.17)
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The action describes a pure topological field theory having no physical evolution w.r.t. to

t. It should be emphasized, that the “time” t is an auxiliary (d + 1)-st dimension, which

has nothing to do with the evolution parameter in the (differential) equations of motion

Ta = 0. The true physical time is among the original d dimensions.

The model (3.17) is invariant under the standard gauge transformations generated by

the first-class constraints and their null-vectors (3.15):

δεx
i = {xi,ΘI}ε

I , δεx̄i = {x̄i,ΘI}ε
I ,

δελ
I = ε̇I − λKU I

KJεJ + ΞI
AεA .

(3.18)

Here εI = (εa, εα) and εA are infinitesimal gauge parameters, and the structure functions

U I
KJ(φ) are defined by (3.16).

Imposing the zero boundary conditions on the momenta

x̄i(t1) = x̄i(t2) = 0 , (3.19)

one can see [8] that the classical dynamics of the model (3.17) are equivalent to those

described by the original (non-)Lagrangian equations Ta = 0.

Example 2. Given the Lagrangian equations of motion (2.14), Lagrange anchor (2.16),

and gauge symmetry generators (2.17), we have the following set of first-class constraints

on the phase space of fields and sources:

T̃i = ∂iS + x̄i , R̃α = Ri
αx̄i . (3.20)

From the definition of gauge algebra it readily follows that

{T̃i, T̃j} = 0, {R̃α, R̃β} = Uγ
αβR̃γ + U i

αβT̃i, {R̃α, T̃i} = U j
αiT̃j, (3.21)

where U j
αi = ∂iR

j
α and U i

αβ = x̄jW
ij
αβ(x). Evidently, the constraints (3.20) are reducible,

R̃α = Ri
αT̃i , (3.22)

and we can take {T̃i} as a complete set of independent first-class constraints. The corre-

sponding Hamiltonian action (3.17) on the phase space of fields and sources reads

SH [x, x̄, λ] =

∫ t2

t1

dt
(
x̄iẋ

i − λi(∂iS(x) + x̄i)
)

. (3.23)

Excluding the momenta from this action by means of equations of motion δS/δλi = 0, we

obtain

SH [x] =

∫ t2

t1

dt ẋi∂iS(x) = S(x(t2)) − S(x(t1)) . (3.24)

The latter action describes two copies of the original Lagrangian theory corresponding to

the ends of the “time” interval [t1, t2]. As there is no coupling between the fields x(t1) and

x(t2), one can consistently restrict dynamics to either subsystem with action ±S[x]. This

proves classical equivalence of the topological theory with action (3.23) to (the two copies

of) the Lagrangian theory with action S[x].
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3.4 Physical observables

The Poisson action of Ω on N makes the space C∞(N ) into a cochain complex graded

by ghost number: A function A is said to be BRST-closed if {Ω, A} = 0 and BRST-exact

if A = {Ω, B} for some B. Let Hn(Ω) denote the corresponding cohomology groups.

As usual, the space of physical observables is identified with the group H0(Ω), BRST

cohomology at ghost number zero.

It can be shown [7] that the cohomology class of any BRST cocycle A with ghost

number zero is completely determined by its restriction to M , i.e., by the function Ā = A|M ,

and a function O ∈ C∞(M) is the restriction of some BRST cocycle iff

〈R(ε), dO〉|Σ = 0 , ∀ε ∈ Γ(F) . (3.25)

The trivial BRST cocycles are precisely those for which O|Σ = 0. Thus, to any on-shell

gauge-invariant function O ∈ C∞(M) one can associate a BRST cocycle and vice versa.

Let [A] ∈ H0(Ω) and x0 ∈ Σ, then the map

[A] 7→ 〈A〉 ≡ Ā(x0) ∈ R (3.26)

establishes the isomorphism H0(Ω) ' R. Since Σ ⊂ M is a connected submanifold and the

distribution R acts on Σ transitively (see Corollary 1), the map (3.26) does not depend on

the choice of x0 ∈ Σ. By definition, 〈A〉 is the classical expectation value of the physical

observable A.

4. Quantization

In previous sections, we have described the procedure that assigns a BRST complex to

any dynamical system, be it Lagrangian or not. The input data needed for constructing

such a complex are the classical equations of motion and the Lagrange structure. This

BRST complex has a clear physical interpretation as that resulting from the BFV-BRST

quantization of the topological sigma-model (3.17), whose target space is the cotangent

bundle of the space of all histories. By construction, the classical dynamics of this effec-

tive topological theory are equivalent to the original ones for any choice of the Lagrange

structure. Quantizing now the model (3.17) by the usual BFV-BRST method, we induce

some quantization of the original (non-)Lagrangian theory; in so doing, different Lagrange

structures may result in different quantizations of one and the same classical model.

Below, we start applying the standard prescriptions of the BFV-BRST operator quan-

tization to the constrained Hamiltonian system (3.17). What remains to specify is a conve-

nient representation. Here we prefer to work in the coordinate (Schrödinger) representation,

whereby a quantum state is described by a wave-function on the ghost-extended space of

all histories. Then a physical wave-function is nothing but the probability amplitude to

find a system developing according to a given history. For the Lagrangian systems, this

amplitude is simply given by the exponential of the action functional multiplied by i/~.

In the non-Lagrangian case, however, it may be a more general distribution, whose form

strongly depends on the choice of a Lagrange anchor. (see examples in section 6).
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A consistent consideration of physical states in the coordinate representation is known

to require further enlargement of the extended phase space by the so-called nonminimal

variables [6]. These do not actually change the physical content of the theory as one gauges

them out by adding appropriate terms to the original BRST charge. The nonminimal

sector just serves to bring the physical states to the ghost-number zero subspace where one

can endow them with a well-defined inner product. We will not dwell on that in details,

referring to the textbook [6]. From now on, Ω will stand for the total (i.e., nonminimal)

BRST charge and the phase space N will include both minimal and nonminimal variables.

4.1 Quantum BRST cohomology

Upon canonical quantization each function on N turns to a linear operator acting in a

complex Hilbert space H:

C∞(N ) 3 F 7→ F̂ ∈ End(H) . (4.1)

A crucial step in the operator BFV-BRST quantization [6] is assigning a nilpotent

operator Ω̂ to the classical BRST charge (3.14). The quantum symbol of the BRST operator

Ω̂ is supposed to have the form

Ω(ϕ, ϕ̄, ~) =

∞∑

k=0

~
kΩ(k)(ϕ, ϕ̄) , (4.2)

where the leading term Ω(0) is given by (3.14) and the higher orders in ~ are determined

from the requirements of hermiticity and nilpotency:

Ω̂† = Ω̂ , Ω̂2 = 0 . (4.3)

It may well happen that no Ω̂ exists satisfying these two conditions, in which case one

speaks about quantum anomalies. In what follows we assume our theory to be anomaly

free so that both equations (4.3) hold true.

In addition to the nilpotent BRST charge, the full BRST algebra involves also the

anti-Hermitian ghost-number operator Ĝ such that [Ĝ, F̂ ] = gh(F )F̂ for any homogeneous

F̂ . In particular,

[Ĝ, Ω̂] = Ω̂ , Ĝ† = −Ĝ . (4.4)

Given the BRST algebra (4.3), (4.4) one has two BRST complexes.

The first one is given by the space of quantum state H with Ω̂ playing the role of

coboundary operator. Under certain assumptions [6] the space H splits as a sum H =

⊕n∈ZH
n of eigenspaces of Ĝ with definite real ghost number. Then Ω̂ : Hn → Hn+1 is the

cochain complex of quantum states graded by ghost number. By Hn
st(Ω) we denote the

n-th group of the BRST-state cohomology.

Associated with the BRST complex of quantum states is the complex of quantum

operators End(H) = ⊕n∈ZEndn(H). By definition, F̂ ∈ Endn(H), iff ad
Ĝ
F̂ ≡ [Ĝ, F̂ ] = nF̂ .

The corresponding coboundary operator adΩ̂ : Endn(H) → Endn+1(H) acts by the rule

adΩ̂F̂ = [Ω̂, F̂ ]. The n-th group of the BRST-operator cohomology is denoted by Hn
op(Ω).
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The algebra of quantum physical observables and the space of quantum physical states

are then identified with the corresponding BRST-cohomology at ghost number zero and

the physical dynamics are described in terms of the H0
op(Ω)-module H0

st(Ω).

Since the BRST charge is Hermitian, the inner product on H induces that on the

space of physical states H0
op(Ω). In many interesting cases, however, the induced inner

product appears to be ill defined and needs regularization. The most popular recipe to get

a regular inner product is to fold the BRST-closed operator e
i

~
[Ω̂,K̂] ∼ 1 between a pair of

BRST-closed states |Ψ1〉, |Ψ2〉 ∈ H:

〈Ψ1|Ψ2〉K = 〈Ψ1|e
i

~
[Ω̂,K̂]|Ψ2〉 , (4.5)

K being an appropriate gauge-fixing fermion of ghost number −1. Evidently, the last

expression passes to the BRST cohomology and is independent of a particular choice of K.

(More precisely, it depends only on the homotopy class of K in the variety of all gauge-fixing

fermions providing finiteness of (4.5).) Now the quantum average of a physical observable

[Ô] ∈ H0
op(Ω) relative to a physical [|Ψ〉] ∈ H0

st(Ω) is given by

〈O〉 =
〈Ψ|Ô|Ψ〉K
〈Ψ|Ψ〉K

. (4.6)

4.2 Generalized Schwinger-Dyson equations

As the Hamiltonian theory we deal with is topological, it might be naively expected that

dimC H0
st(Ω) = 1, so that the space of physical states is spanned by a unique (up to

equivalence) BRST-closed state |Φ〉 ∈ H. This would be quite natural because the proba-

bility amplitude must be a unique distribution on the space of all histories with prescribed

boundary conditions. Actually, it is not always the case in the BRST theory: The physical

dynamics may have several copies in the BRST-cohomology (the H0
op(Ω)-module H0

st(Ω)

is generally reducible), and choosing one of them amounts to imposing extra conditions on

the physical states [6, §14.2.6]. A guiding principle here is to provide a positive-definiteness

of the inner product (4.5) on a superselected physical space.

To be more specific, consider quantization of the gauge system (3.5), (3.14) in the

case where N is a superdomain endowed with canonical Poisson brackets, that is, in for-

mulas (3.5), we just take ∇ to be a flat connection. Furthermore, we assume that the

ϕϕ̄-symbol of the quantum BRST charge (4.2) satisfies condition

Ω(ϕ, 0, ~) = 0 . (4.7)

This property takes place for the leading (classical) term Ω0 = Ω(ϕ, ϕ̄, 0) and we require

that it holds true with account of all quantum corrections. Then, the state |Φ〉 that is

annihilated by all the momenta,
ˆ̄ϕI |Φ〉 = 0 , (4.8)

is annihilated by the BRST charge as well. After an appropriate polarization of the non-

minimal sector [8], the state |Φ〉 caries zero ghost number, and hence, defines a physical

state. In the coordinate representation, for instance, we have Φ(ϕ) = c ∈ C. At first glance
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the amplitude Φ, being just a constant, has nothing to do with the original dynamics, but

that is illusion: The state |Φ〉 has an ill-defined norm in H, so in order to calculate the

quantum average of a physical observable, say 1 ∈ H0
op(Ω), one has use the regularized in-

ner product (4.5), but that brings an inevitable dependence of the BRST charge. In other

words, the information about the original gauge system enters to the state |Φ〉 implicitly,

through passage to the BRST cohomology. To make this dependence more explicit one

should consider the BRST-dual of the state |Φ〉 (see [6, §14.5.5] for general definitions).

The dual state looks like8

|Φ′〉 = |ψ〉 ⊗ |ghosts〉 (4.9)

and is not in general equivalent to the state |Φ〉. In the coordinate representation the first

factor |ψ〉, called the matter state, is described by a wave-function on M , while the second

factor is given by a wave-function of all other coordinates. By definition, the matter state

is annihilated by the quantum constraints:

Θ̂I |ψ〉 = 0 , (4.10)

where the xx̄-symbols of the constraint operators Θ̂I are given by

ΘI(x, x̄, ~) =
∂Ω(ϕ, ϕ̄, ~)

∂CI

∣∣∣∣
ghosts=0

(4.11)

It is the state |ψ〉 that appears as physical state in Dirac’s quantization method. The

consistency of equations (4.10) implies the following commutation relations for the quantum

constraints:

[Θ̂I , Θ̂J ] = ÛK
IJΘ̂K (4.12)

with Θ̂’s to the right of Û ’s. In view of the last relation we can regard (4.10) as a non-

abelian generalization of the Schwinger-Dyson equation to the case of non-Lagrangian

gauge theories. The next example justifies this interpretation.

Example 3. Upon canonical quantization in the coordinate representation the independent

first-class constraints T̃i in (3.20) turn to the pairwise commuting differential operators:

ˆ̃
T i = ∂iS(x) − i~

∂

∂xi
, [

ˆ̃
T i,

ˆ̃
T j ] = 0 . (4.13)

Imposing these operators on the physical wave-function ψ(x), we arrive at the well-known

Schwinger-Dyson equation in coordinate representation

[
∂iS(x) − i~

∂

∂xi

]
ψ(x) = 0 . (4.14)

A unique (up to an overall constant) solution to this equation is given by the Feynman

probability amplitude on M ,

ψ(x) = e−
i

~
S(x) . (4.15)

8Hereafter the term “ghosts” refers to all fields with nonzero ghost number.
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One can also quantize the constraints (3.20) in the momentum representation, which is

related to the coordinate one by the (functional) Fourier transform. The corresponding

wave-function

Z(x̄) =

∫
Dxψ(x)e−

i

~
xix̄i =

∫
Dxe−

i

~
(S(x)+xix̄i) (4.16)

is nothing but the generating functional of Green’s functions with x̄’s playing the role of

classical sources.

In principle, one can use any copy of a single physical state in the BRST-state co-

homology to compute the quantum average of a physical observable [O] ∈ H0
op(Ω) by

formula (4.6). It is also possible and is particularly convenient to use the asymmetric

definition for the quantum averages:

〈O〉 =
〈Φ′|Ô|Φ〉K
〈Φ′|Φ〉K

(4.17)

In [8], it was shown that all such definitions give one and the same value 〈O〉. Similarly to

the BRST-state cohomology, the BRST-operator cohomology is essentially one-dimensional

that allows one to establish a one-to-one correspondence between the physical states and

physical observables. Namely, given a physical observable Ô, we define the physical state

|O〉 = Ô|Φ〉 . (4.18)

The latter is necessarily of the form |O〉 = 〈O〉|Φ〉 + Ω̂|Λ〉. Using the coordinate represen-

tation, we can rewrite (4.17) as

〈O〉 =
〈Φ′|O〉K
〈Φ′|1〉K

= (const)

∫
DϕO(ϕ)Φ′

K(ϕ) . (4.19)

The last expression enables us to treat the gauge-fixed probability amplitude Φ′
K(ϕ) =

〈Φ′|ϕ〉K as a linear functional on the space of physical observables represented by the

physical states O(ϕ) = 〈ϕ|O〉.

4.3 Path-integral representation

Regarding the regulator e
i

~
[Ω̂,K̂] in (4.5) as the evolution operator corresponding to the

BRST-trivial Hamiltonian Ĥ = [Ω̂, K̂], we can immediately write down the path-integral

representation for the quantum average (4.6):

〈O〉 =
〈Φ|Ôe

i

~
[Ω̂,K̂]|Φ〉

〈Φ|e
i

~
[Ω̂,K̂]|Φ〉

= (const)

∫
DϕDϕ̄O(ϕ(1)) exp

i

~

∫ 1

0
dt(ϕ̄I ϕ̇

I − {Ω,K}) . (4.20)

Here the normalization constant is chosen in such a way that 〈1〉 = 1 and integration

extends over all fields obeying

ϕ̄I(0) = ϕ̄I(1) = 0 . (4.21)

These boundary conditions follow directly from definition (4.8) of the physical state |Φ〉.

Because of (4.21) only the ϕ̄-independent part

O(ϕ) = O(ϕ, ϕ̄)|ϕ̄=0 = O(x) + (ghost terms) (4.22)
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of the physical observable O contributes to the path integral (4.20). It is not hard to see

that the function (4.22) obeys to (and can be determined from) the following equation:

QO = {Ω1, O} = 0 , (4.23)

Q being the classical BRST differential (3.9).

Note that (4.20) is nothing but the usual Feynman’s path integral for the topological

sigma-model with action

S[ϕ, ϕ̄] =

∫ 1

0
dt(ϕ̄I ϕ̇

I − {Ω,K}) . (4.24)

This can be viewed as resulting from the BFV quantization of the constrained Hamiltonian

theory (3.17). If dimX = d, where X is the initial space-time manifold, then (4.24)

defines a topological field theory on the (d + 1)-dimensional manifold X̃ = X × I with

boundary. Suppose X is an orientable manifold, then so is X̃ = X × I and each of the

two orientations of X̃ induces opposite orientations on the connected components of the

boundary ∂X̃ = X0 ∪ X1; here X0 ' X ' X1 and the subscripts 0 and 1 refer to the

different orientations of X.

As the model (4.24) is purely topological, there are no physical dynamics in the bulk

of X̃. Put differently, all the physical degrees of freedom, if any, are supported at the

boundary ∂X̃ = X0 ∪X1, where they evolve according to the classical equations of motion

Ta = 0; in so doing, the dynamics on X0 and X1 are completely independent of each other.

Thus, the action (4.24) describes two copies of the same filed-theoretical model, which defer

only by orientation of the space-time manifold X (two parallel universes).

This classical consideration can be further promoted to the quantum-mechanical level.

Consider the projected kernel associated with the matter state (4.10). It can be defined by

the path integral [6]:

ψ(x1)ψ̄(x0) =

∫
DϕDϕ̄ e

i

~
S[ϕ,ϕ̄] , (4.25)

where the sum runs over trajectories (ϕI(t), ϕ̄J (t)) subject to appropriate boundary condi-

tions at t = 0, 1. In particular, x1 = x(1), x0 = x(0); the boundary conditions for the other

variables can be found in [8]. According to our definitions, the state ψ describes a gauge

invariant probability amplitude for a field theory on X0. Then ψ̄ must play the same role

for X1.
9 Multiplying ψ by ψ̄, we get the right probability amplitude for the field theory on

X0 ∪ X1, as there is no interaction between the fields on X0 and X1 (correlations through

the bulk of X̃ are completely suppressed by gauge invariance).

Example 4. Let us compute the quantum average (4.20) for the topological model (3.23),

where the action S is not gauge invariant. A good gauge-fixing condition in the bulk is the

derivative gauge

ẍi = 0 . (4.26)

9In the Lagrangian field theory, for example, the probability amplitude has the form ψ = e
i

~
S, where the

action functional is given by the integral S =
R

X
L of some top form L (a Lagrangian density). Changing

an orientation of X yields S → −S, hence ψ → ψ̄.
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As with any abelian gauge theory, the ghost fields are decoupled from the matter ones and

can thus be integrated out explicitly. The result is given by

〈O〉 = c

∫
DxDx̄Dλδ[ẍ]O(x(1))e

i

~
SH [x,x̄,λ] (4.27)

= c

∫
Dxδ[ẍ]O(x(1)) exp

i

~
(S[x(1)] − S[x(0)]) (4.28)

= c′
∫

Dx(1)O(x(1))e
i

~
S[x(1)] = 〈O|ψ〉〈ψ|1〉 , (4.29)

where

ψ(x) = e
i

~
S[x] , c′ = c〈ψ|1〉 = c

∫
Dx(0)e−

i

~
S[x(0)] . (4.30)

So, up to a normalization constant, the integral (4.27) gives the usual quantum average of

an observable O in the Lagrangian theory with action S. Notice that one can arrive at the

same result by imposing the derivative gauge on the Lagrange multiplier λ̇i = 0.

5. Augmentation

In previous sections, we have formulated the quantization procedure for (non-)Lagrangian

gauge theories, which starts with the classical equations of motion and Lagrange structure

as input data and results in the generalized Schwinger-Dyson equation for the probability

amplitude on the space of all histories M . We have also seen that the amplitude admits

a simple path-integral representation in terms of a Lagrangian topological field theory in

the space-time with one more dimension. In this section, we derive an alternative path-

integral representation for the probability amplitude of a (non-)Lagrangian theory in terms

of some Lagrangian model on the same space-time manifold, but augmented with extra

fields. The configuration space of the augmented field theory is taken to be the total space

of the vector bundle E∗ → M , the dual to the dynamics bundle E ; in so doing, the original

configuration space M is embedded in E∗ as the zero section. The augmentation procedure

extends the original (non-)Lagrangian dynamics from M to E∗ in such a way that the

entire system becomes Lagrangian. We show that, at classical level, the augmented theory

is equivalent to the original one provided that special boundary conditions are fixed for the

augmentation fields. At quantum level, integrating the Feynman probability amplitude on

E∗ over the augmentation fields yields the probability amplitude on M .

5.1 An augmented BRST complex.

Augmentation of the original dynamics on M implies a consistent extension to E∗ of the

original equations of motion, gauge symmetries, Noether identities, and the Lagrange struc-

ture. As a practical matter, it is convenient to make these extensions not at the level of

the space of all histories, but augmenting the ambient symplectic manifold N , which al-

ready involves all necessary ghost fields of the original theory. The overall result of these

extensions turns out to be just a “duplication” of the ambient manifold. More precisely,

the manifold N , considered as the total space of the vector bundle (3.1), is replaced with

– 22 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
7

fibers E∗ E G∗ G T ∗M TM F∗ F

fiber coordinates ya ȳb cA c̄B ηi η̄j ξα ξ̄β

ε =Grassman parity 0 0 1 1 1 1 0 0

gh = ghost number 0 0 1 -1 -1 1 -2 2

Deg = momentum degree 0 1 0 1 0 1 0 1

deg = resolution degree 1 0 1 0 1 0 1 0

Table 2: The gradings of augmentation fields.

Naug = N ⊕ Π(N ⊕ TM). Table 2 contains the data on various gradings assigned to the

fiber coordinates of Π(N ⊕ TM):

In order to compare the ghost numbers of the new and old fields it is convenient to

assemble the augmentation fields into “position coordinates” and “momenta”:

ϕaug
I = (ηi, ξα, ya, cA) , ϕ̄I

aug = (η̄i, ξ̄α, ȳa, c̄A) . (5.1)

Then we have
gh(ϕaug

I ) = −gh(ϕ̄I
aug) , ε(ϕaug

I ) = ε(ϕ̄I
aug) ,

Deg(ϕ̄I
aug) = 1 , Deg(ϕaug

I ) = 0 ,

(5.2)

and

gh(ϕaug
I ) = gh(ϕ̄I) − 1 , gh(ϕ̄I

aug) = gh(ϕI) + 1 . (5.3)

So, the “duplication” of the ambient manifold N is accompanied with reversion of parities

and shift of ghost numbers.

As a next step, we extend the exact symplectic structure (3.3) on N to that on Naug

by setting

ωaug = ω + d(ϕ̄I
aug∇ϕaug

I ) , (5.4)

∇ being some connection on N ⊕ TM .

Finally, the original BRST charge Ω on N is extended to Naug as

Ωaug = Ω +

∞∑

n=0

Ωn , deg(Ωn) = n . (5.5)

Here

Ω0 = ϕ̄I ϕ̄
I
aug (5.6)

and the higher orders in the resolution degree are determined from the master equation

{Ωaug,Ωaug} = 0 . (5.7)

Let us show that the last equation has a solution indeed. To this end, we introduce

the following pair of nilpotent operators:

δ = ϕ̄I
∂

∂ϕaug
I

, δ2 = 0 , deg(δ) = −1 ,

δ∗ = ϕaug
I

∂

∂ϕ̄I
, (δ∗)2 = 0 , deg(δ∗) = 1 .

(5.8)

– 23 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
7

It is straightforward to check that

δδ∗ + δ∗δ = N , N ≡ N1 + N2 , (5.9)

where the operator

N1 = ϕ̄I
∂

∂ϕ̄I
(5.10)

counts the momentum degree of the “old” variables (see table 1), while

N2 = ϕaug
I

∂

∂ϕaug
I

(5.11)

counts the resolution degree of augmentation fields. If we regard δ as the differential of the

cochain complex C∞(Naug), then δ∗ becomes a homotopy for N with respect to δ. As a

result, all the nontrivial δ-cocycles are nested in the subspace ker N ⊂ C∞(Naug).

Now applying the standard technique of homological perturbation theory [6], we can

prove the following statement.

Proposition 1. There is a unique BRST charge (5.5) satisfying the master equation (5.7)

and the condition

δ∗(Ωaug − Ω − Ω0) = 0 . (5.12)

Proof. Expanding the master equation (5.7) with respect to the resolution degree, we arrive

at the following sequence of equations:

δΩn+1 = Bn(Ω0, . . . ,Ωn) , n ∈ N , (5.13)

where

Bn = Pn

(
{Ω,Ωn} +

n∑

s=0

{Ωn−s,Ωs}

)
, (5.14)

and Pn is the projector on the subspace of functions of resolution degree n. We can solve

these equations in series starting with δΩ1 = B0. Since deg Bn = n and the function

B0 = {Ω,Ω0} contains no terms of zero momentum degree w.r.t. the old variables, the

operator N is invertible on the subspace W ⊂ C∞(Naug) spanned by all B’s. The condition

δBn = 0 is then necessary and sufficient for the n-th equation (5.13) to be solvable. The

closedness of Bn is established by induction on n, just putting successive restrictions on

the resolution degree of the Jacobi identity {Ω, {Ω,Ω}} ≡ 0.

Finally, applying the operator δ∗ to both sides of eq. (5.13) and using Rels. (5.9), (5.12),

we get the following recurrent relations for the homogeneous components of Ω:

Ωn+1 = δ∗(N |W )−1Bn(Ω0, . . . ,Ωn) . (5.15)

Here we have used the fact that the operator δ∗ commutes with N and, as a consequence,

with (NW )−1. By construction, δ∗Ωn = 0, ∀n > 0, so that the augmented BRST charge

Ωaug meets equation (5.12). ¤

In sequel we will need the following property of the augmented BRST charge.

Proposition 2. If the augmented BRST charge (5.5) satisfies (5.12), then

(Ωaug − Ω − Ω0)|ϕ̄I
aug=0 = 0 . (5.16)

Proof. by induction on resolution degree.
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5.2 Interpretation

Given the augmented BRST charge (5.5), one may ask what is a classical theory this BRST

charge corresponds to (or can be derived from). According to the general definitions of

section 3, the equations of motion, gauge symmetry and Noether identity generators, as

well as the Lagrange anchor, enter the BRST charge as coefficients at lower powers of fiber

coordinates with certain ghost numbers and momentum degrees (see relation (ii) at the

beginning of section 3.2). So, to identify all the key ingredients of the underlying gauge

dynamics we are going just to evaluate the appropriate terms in the augmented BRST

charge. Thus, the equations of motion define the terms that are linear in fiber coordinates:

Ta =
∂Ωaug

∂η̄a

∣∣∣∣
E∗

= Ta(x) = 0 , Ti =
∂Ωaug

∂η̄i

∣∣∣∣
E∗

= ∇iTay
a + o(y2) = 0 . (5.17)

As is seen, the first group of equations coincides with the original equations of motion on

M . The absence of y-contributions to these equations is guaranteed by Proposition 2. So,

the original dynamics on M are completely decoupled from the augmented system (5.17).

The second group of equations, being at least linear in y’s, admit a trivial solution ya = 0,

which can be singled out by imposing zero boundary conditions on y’s.

In general, the augmented equations of motion (5.17) are both gauge invariant and

linearly dependent. It follows from definiens of section 3.2 that the gauge algebra generators

are given by

Rα =
∂2Ωaug

∂cα∂x̄i

∣∣∣∣
E∗

∂

∂xi
+

∂2Ωaug

∂cα∂ȳa

∣∣∣∣
E∗

∂

∂ya
= Ri

α(x)
∂

∂xi
+ o(y) ,

RA =
∂2Ωaug

∂cA∂ȳa

∣∣∣∣
E∗

∂

∂ya
+

∂2Ωaug

∂cA∂x̄i

∣∣∣∣
E∗

∂

∂xi
= Za

A(x)
∂

∂ya
+ o(y) ,

(5.18)

so that
RαTa = Ub

αaTb + Ui
αaTi , RATa = Ub

AaTb + Ui
AaTi ,

RαTi = Ub
αiTb + Uj

αiTj , RATi = Ub
AiTb + Uj

AiTj ,

(5.19)

for some structure functions U. The Noether identities have the following form in the

augmented theory:

Za
ATa + Zi

ATi = 0 , Za
αTa + Zi

αTi = 0 , (5.20)

where

Za
A =

∂2Ωaug

∂ξ̄A∂ηa

∣∣∣∣
E∗

= Za
A(x) + o(y) , Zi

A =
∂2Ωaug

∂ξ̄A∂ηi

∣∣∣∣
E∗

= o(y) ,

Zi
α =

∂2Ωaug

∂ξ̄α∂ηi

∣∣∣∣
E∗

= Ri
α(x) + o(y) , Za

α =
∂2Ωaug

∂ξ̄α∂ηa

∣∣∣∣
E∗

= o(y) .

(5.21)

As is seen from Rels. (5.18), there are two types of gauge symmetry transformations

in the augmented theory. The first ones, generated by Rα, are just extensions to E∗ of the
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original gauge symmetries. The second type transformations, generated by RA, start from

the vertical vector fields on E∗ associated with the Noether identity generators Za
A.

Looking at the generators of Noether’s identities (5.21), one can observe a mirror

inversion in the structure of the gauge symmetry generators: The generators Rα on M give

rise to the Noether identity generators Zα, while the generator ZA is just a continuation

of corresponding Noether identity generator from the original theory.

We thus conclude that the numbers of Noether’s identities and gauge symmetries

coincide in the augmented theory. Furthermore, the expansion in the augmentation fields

yi starts with the same terms for both sets of generators. And one can further deduce that

the generators of identities (5.21) coincide with the generators of gauge symmetries (5.18).

Such a pairing between Noether identities and gauge symmetries is characteristic for the

Lagrangian dynamics.

To further elucidate the meaning of the augmented BRST charge in terms of the phase

space of fields xi, ya and their sources x̄i, ȳa, we introduce the following collective notation:

φā = (xi, ya) , φ̄ā = (x̄i, ȳa) , η̄ā = (η̄i, η̄a) . (5.22)

Then the deformed phase-space constraints associated with the augmented equations of

motion (5.17) are given by

T̃ā =
∂Ωaug

∂η̄ā

∣∣∣∣
E∗⊕T ∗M⊕E

= Tā(φ) + V b̄
ā (φ)φ̄b̄ +

∞∑

k=2

V b̄1···̄bk

ā (φ)φ̄b̄1
· · · φ̄b̄k

≈ 0 . (5.23)

According to our definitions, the coefficients V b̄
ā (φ) in (5.23) are to be identified with

the components of the Lagrange anchor. Using the recurrent relations (5.15), we find

V = (V b̄
ā ) =




V i
a(x) δb

a

δi
j 0


 + o(y) . (5.24)

As is seen the augmented Lagrange anchor is always nondegenerate and its inverse has the

form

Λ = V −1 =




0 δi
j

δb
a −V i

a(x)


 + o(y) . (5.25)

To make contact with the definitions of section 2, we identify the total space of the

tangent bundle TE∗ with the total space of E∗⊕TM ⊕E∗ and the total space of T ∗E∗ with

that of E ⊕ T ∗M ⊕ E∗ by making use the linear connection ∇ on E∗ → M . Upon these

identifications, the bundle map TE∗ → E∗ goes into the bundle map E∗ ⊕ TM ⊕ E∗ → E∗

(projection on the third factor) and the same is true for the cotangent bundle T ∗E∗. Now

we can summarize the discussion above as follows.

Proposition 3. The augmented BRST complex describes a complete Lagrange structure

of type (1,1) associated to the on-shell exact sequence

0 → V → TE∗ → T ∗E∗ → V → 0 , (5.26)

– 26 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
7

where the gauge algebra (= Noether identity) bundle V is the vector bundle with the base

E∗, total space F ⊕ E∗ ⊕ G, and the bundle map p : F ⊕ E∗ ⊕ G → E∗ (projection on the

second factor).

The completeness of the augmented Lagrange structure has two immediate conse-

quences. First of all, the constraints (5.23) define a Lagrangian submanifold in the aug-

mented phase space E∗⊕T ∗M⊕E , so that the rest of the constraints, namely, the constraints

R̃α =
∂Ωaug

∂cα

∣∣∣∣
E∗⊕T ∗M⊕E

= R̃α(x, x̄) + o(y) ,

R̃A =
∂Ωaug

∂cA

∣∣∣∣
E∗⊕T ∗M⊕E

= Z̃a
A(x, x̄)ȳa + o(y)

(5.27)

associated with the gauge symmetry generators (5.18), (3.15), are given by linear combi-

nations of (5.23). The second consequence is that, according to Theorem 1, the augmented

equations of motion (5.17) are equivalent to Lagrangian ones.

To get an explicit expression for corresponding action functional, one has just to resolve

the first-class constraints (5.23) with respect to momenta φ̄ā. This can always be done at

least perturbatively. As a starting point, we rewrite the constraint equations (5.23) in the

following equivalent form:

φ̄ā = −Λb̄
āTb̄ − Λb̄

ā

∞∑

k=2

V ā1···āk

b̄
φ̄ā1

· · · φ̄āk
, (5.28)

where Λ is defined by relation (5.25). Then, taking φ̄ = −ΛT as zero order approximation

and iterating these equations ones and again, we finally arrive at the equivalent set of

first-class constraints

T̃′
ā = φ̄ā − T′

ā(φ) ≈ 0 , (5.29)

where

T′
ā =

∞∑

k=1

F b̄1···̄bk(φ)Tb̄1
(φ) · · ·Tb̄k

(φ) = Λ̃(φ)b̄āTb̄(φ) . (5.30)

The constraints (5.29), being resolved w.r.t. momenta φ̄ā, are to be necessarily commuting,

{T̃′
ā, T̃

′
b̄
} = 0 , (5.31)

that amounts to existence of an action functional S(φ) such that

T′
ā(φ) = ∂āS(φ) . (5.32)

Thus, the augmented equations of motion are equivalent to the Lagrangian equations (5.32)

with Λ̃ playing the role of integrating multiplier. Finally, using the standard homotopy

operator for the exterior differential, we can reconstruct the action as

S(φ) = φā

∫ 1

0
T′

ā(sφ)ds + (const) . (5.33)
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Up to the second order in y’s and an inessential additive constant the action reads

S(x, y) = Ta(x)ya + Gab(x)yayb + o(y3) . (5.34)

Here the symmetric matrix

Gab = V i
a∇iTb + V i

b ∇iTa (5.35)

can be thought of as a generalization of Van Vleck’s matrix. It is the matrix that defines

the form of the first quantum correction to the classical average of physical observables [7].

More explicitly, the equations of motion (5.32) following from variation of (5.33) read

T′
a =

∂S

∂ya
= Ta(x) + o(y) = 0 , T′

i =
∂S

∂xi
= ∂iTay

a + o(y2) = 0 . (5.36)

As is seen, the dynamics on M do not decouple from those on the augmented configuration

space E∗ for arbitrary boundary conditions of y’s, as opposite to (5.17). Nonetheless,

imposing zero boundary conditions on y’s, we can satisfy the second group of equations

in (5.36) with y = 0 and x is arbitrary. Then the first group of equations reduces to the

original equations of motion on M .

An important observation on the action (5.34) is that it has the form of local functional

whenever the augmented constraints (5.23) are local.10 Indeed, the only place where non-

locality could emerge is the inversion of the augmented anchor (5.24). But, as is seen

from (5.25), the inversion procedure, being performed perturbatively in y’s, does not spoil

locality. Therefore, the equivalent Lagrangian equations (5.32) are local and so is the action

functional (5.33).

5.3 Quantizing non-Lagrangian dynamics via augmentation

As the augmented theory is always Lagrangian, its probability amplitude has the standard

form

Ψ(x, y) = e
i

~
S~(x,y) , S~(x, y) =

∞∑

n=0

~
nSn(x, y) . (5.37)

Here the leading term S0(x, y) is given by the classical action (5.34) and the other terms

can be regarded as quantum corrections to the naive path-integral measure dxdy on E∗. By

definition (4.10), the probability amplitude (5.37) is a unique solution to the Schwinger-

Dyson equations
ˆ̃
TIΨ(x, y) = 0 (5.38)

associated with the (over)complete set of augmented constraints (5.23). Notice that the

φφ̄-symbols of the quantum constraint operators in (5.38) may defer from (5.23) by some

quantum corrections in ~. These corrections can be systematically derived by solving the

quantum master equation Ω̂2
aug = 0 for the augmented BRST operator.

What we are going to show in this section is that integrating the amplitude (5.37) of

y’s, we get the solution to the original Schwinger-Dyson equations (4.10). In other words,

averaging the augmented probability amplitude (5.37) over the fibers of the vector bundle

10i.e., given by ordinary functions of fields (φI , φ̄J) and their derivatives up to some finite order.
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E∗ → M yields the probability amplitude for the original (non-)Lagrangian dynamics on

M . We prove this statement under the following technical assumptions:

a) The normal symbol of the augmented BRST operator Ω̂aug, which may differ from

the classical BRST charge (5.5) by some quantum corrections, still obeys Rel. (5.16).

b) Both the augmented and original constraint operators are hermitian (w.r.t. the stan-

dard inner product associated with the translation-invariant integration measures

dxdy and dx on E∗ and M , respectively).

Note that the second condition follows from hermiticity requirement for the BRST operator

provided that the fields η̄I are chosen to be real, i.e., (η̄I)∗ = η̄I .

Proposition 4. Under the assumptions above,

(i) the physical observables of the original theory are also observables of the augmented

theory;

(ii)the functional

ψ(x) =

∫
dyΨ(x, y) , (5.39)

where Ψ(x, y) is the Feynman amplitude (5.37) and the integral is taken over all y’s sat-

isfying zero boundary conditions, obeys the original Schwinger-Dyson equations (4.10) in

coordinate representation;

(iii) let O be the physical observable associated with an on-shell gauge invariant func-

tion O ∈ C∞(M) of the original theory, then the quantum average (4.17) is given by

〈O〉 = (const)

∫
dydxO(x)Ψ(x, y) . (5.40)

Remark 3. The integrals (5.39) and (5.40), as they stand, are well defined only for the-

ories of type (0, 0). In presence of gauge symmetries and/or Noether identities one should

treat the action S~(x, y) within the usual BV quantization method. This implies extension

of the augmented configuration space E∗ by ghost fields and imposing gauge fixing condi-

tions that effectively reduces integration (5.40) to the space of gauge orbits. It is a perfectly

standard technology and we will not dwell on it here.

Proof. Statement (iii) is an immediate consequence of (i) and (ii).

We start with proving (ii). By definition, the amplitude Ψ(x, y) is the matter state

annihilated by the operators of augmented constraints. In particular, it is annihilate by

the constraint operators that are extensions to E∗ of the original constraints (3.15). We

have

Θ̂IΨ(x, y) = 0 , (5.41)

where the constraints ΘI = (T̃a, R̃α) are defined by Rels. (5.23) and (5.27). The condi-

tion (5.16), being imposed on the normal symbol of the augmented BRST charge, suggests

the following structure for the φφ̄-symbols of the constraint operators:

ΘI = ΘI(x, x̄) + o(ȳ). (5.42)
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That is the difference ΘI −ΘI between the original and augmented constraints is not only

at least first order in y’s it is also at least first order in ȳ’s. Now multiplying (5.41) on an

arbitrary function of xi and integrating the result over E∗, we get

0 =
∫

dxdy Φ(x)Θ̂IΨ(x, y) =
∫

dxdy (Θ̂†
IΦ(x))Ψ(x, y)

=
∫

dx Θ̂†
IΦ(x)

∫
dy Ψ(x, y) =

∫
dxΦ(x)Θ̂I

∫
dy Ψ(x, y) .

(5.43)

Here we have used the hermiticity requirements

Θ̂†
I = Θ̂I , Θ̂†

I = Θ̂I , (5.44)

and Rel. (5.42). Since the function Φ(x) is arbitrary, the identity (5.43) is equivalent to

the desired one

Θ̂I

∫
dy Ψ(x, y) = 0 . (5.45)

Now, let us prove (i). As we have already mentioned in section 3.4, the space of

physical observables is canonically isomorphic to the space of on-shell invariant functions

on configuration space modulo trivial ones. In particular, a function O ∈ C∞(E∗) gives

rise to a BRST invariant function on Naug, i.e., an observable of the augmented theory, iff

RαO = Wa
αTa + Wi

αTi , RAO = Wa
ATa + Wi

ATi (5.46)

for some W’s. Here the generators of the augmented gauge algebra may differ from (5.27)

by quantum corrections. Due to Proposition 2 and our assumptions these generators have

the following structure:

Rα = Ri
α(x)

∂

∂xi
+ Ra

α(x, y)
∂

∂ya
, RA = Ra

A(x, y)
∂

∂ya
. (5.47)

It remains to observe that for a y-independent function O(x), eqs. (5.46) reduce to the

on-shell invariance condition (3.25),

RαO = W a
αTa . (5.48)

This completes the proof.

Example 5. Consider a Lagrangian theory with action S(x). In this case, the dynamics

bundle coincides with the cotangent bundle T ∗M of the space of all histories. For simplicity

sake assume that T ∗M admits a flat connection. Given the canonical anchor (2.16), the

augmented constraints (5.23) on TM ⊕ T ∗M ⊕ T ∗M read

T̃i = ∂iS(x) + x̄i − ȳi , T̃′
i = ∂iS(x + y) − ∂iS(x) − x̄i . (5.49)

The action of the augmented theory (5.34) takes the form

S(x, y) = S(x + y) − S(x) = yi∂iS(x) +
1

2
yiyj∂i∂jS(x) + · · · . (5.50)
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After normalization, the quantum average of a physical observable O(x) coincides with its

usual value

〈O〉 =

∫

TM

dxdy O(x)e
i

~
S(x,y) = (const)

∫

M

dxO(x)e−
i

~
S(x) . (5.51)

Of course, in the presence of gauge symmetries both these integrals are to be understood as

integrals over the space of gauge orbits rather than over TM or M .

In this Lagrangian case, it is quite natural to interpret the augmentation fields yi as

the variations of the original fields xi and this interpretation is automatically consistent

with the zero boundary conditions for y’s.

6. Examples of quantizing non-Lagrangian field theories

In this section, we demonstrate by examples what the Lagrange anchor can look like in non-

Lagrangian relativistic field theory and how the general formalism described in previous

sections works in practice. As the examples we consider two illustrative non-Lagrangian

models: Maxwell electrodynamics with monopoles and self-dual p-form fields.

The Maxwell equations are considered in terms of the strength tensor and, in this for-

mulation, they are not Lagrangian even without magnetic currents. If a magnetic monopole

was point-like and satisfied the Dirac quantization condition, the theory would admit an

equivalent Lagrangian formulation in terms of vector potential. We consider generic mag-

netic and electric sources, so the theory does not have any Lagrangian reformulation,

although it still has a nontrivial Lagrange anchor, that is sufficient for a consistent quan-

tization of the model. The observation about the structure of the Lagrange anchor might

also be instructive for other non-Lagrangian field theories formulated in terms of strength

tensors.

Studying the second example, we reverse the order of exposing the quantization proce-

dure as compared to that described in sections 4 and 5. Given the equations of motion for a

non-Lagrangian field theory in d dimension and a compatible Lagrange anchor, the general

method allows one to equivalently reformulate this theory as a topological Lagrangian field

theory in d + 1 dimensions, with the original dynamics being localized at the boundary

of this (d + 1)-dimensional space-time. This also allows for a reverse consideration: one

can start with an appropriate (d+1)-dimensional, topological Lagrangian theory and then

identify “original” d-dimensional field equations and a Lagrange anchor in the action of

the topological theory. In practice, this can be an instructive scheme for identifying those

non-Lagrangian models that admit Poincaré covariant Lagrange anchors. To exemplify this

idea, we take the Chern-Simons theory in 4n + 3 dimensions and reinterpret it as resulting

from some quantization of self-dual (2n + 1)-form fields in 4n + 2 dimensions.

6.1 Maxwell electrodynamics with monopoles

Consider the Maxwell equations with electric and magnetic currents:

d†F̃ = I , d†F = J . (6.1)
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Here F is the strength of the electromagnetic field, whose Hodge dual is denoted by F̃ = ∗F ,

J and I are the electric and magnetic currents, respectively, and d† = ∗d∗ is the adjoint

exterior differential. As a consequence of eqs. (6.1), the currents J and I are conserved,

d†I = 0 , d†J = 0 . (6.2)

Clearly, Equations (6.1), as they stand, are not Lagrangian, even if we set I = 0. (The

number of equations is less than the number of fields).

Let us introduce the source P which is canonically conjugate to the field F . With the

field F , being a 2-form on the space-time manifold, the source P is a bivector field on the

same manifold. The canonical symplectic structure on the cotangent bundle of the space

of all histories is given by

ω =

∫
δF̃ ∧ δP ′ , (6.3)

where the 2-form P ′ is obtained from P by lowering the upper indices with the space-time

metric.

Consider now the following set of first-class constraints on the phase space of fields

and sources:
T 1 = d†F̃ − I ≈ 0 , T 2 = d†(F + P ′) − J ≈ 0 ,

{T a, T b} = 0 , a, b = 1, 2 .

(6.4)

These constraints are obtained from (6.1) by adding the momentum depending term d†P ′

to the second group of equations. It is the term that defines the canonical Lagrange anchor

for the Maxwell electrodynamics [7]. Observe that the anchor is regular but not com-

plete (see Definition 2.3). The physical meaning of this incompleteness can be understood

in the following way. Let I = 0, then the first group of equations (6.1) expresses the

closedness condition for the strength form F . The absence of momentum contributions to

the corresponding constraints T 1 ≈ 0 implies that we consider these equations as being

pure non-Lagrangian in the sense of Theorem 2.5. Hence, no quantum fluctuations violate

the closedness condition dF = 0, that guarantees the existence of a local gauge potential

A = d−1F both at classical and quantum levels.

Notice that the constraints (6.4) are linearly dependent, d†T a = 0, while the classical

equations of motion (6.1) are not gauge invariant. Thus, according to Definition 2.1, we

have a theory of type (0, 1).

Upon canonical quantization, the constraints (6.4) turn into the following Schwinger-

Dyson operators:

T̂ 1 = d†F̃ − I , T̂ 2 = d†
(

F − i~
δ

δF ′

)
− J , (6.5)

F ′ being the contravariant strength tensor of electromagnetic field. The corresponding

Schwinger-Dyson equation for the probability amplitude

T̂ aΨ[F ] = 0 (6.6)
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is satisfied by

Ψ[F ] = ∆[T 1]e
i

~
S[F ] . (6.7)

Here

S[F ] =

∫
1

2
GdF̃ ∧ ∗dF̃ − GF̃ ∧ dJ , ∆[T 1] =

∫
DCδ[T 1 − dC] , (6.8)

C is an auxiliary 0-form, and G is the inverse of the Laplace operator ¤ = dd†+d†d. One can

easily see that the distribution ∆[T 1], considered as the functional of F , is supported at the

points where T 1[F ] = 0 so that T 1∆[T 1] = 0. (A naive solution to the last equation, namely

∆[T 1] = δ[T 1], is ill defined because of linear dependence of the constraints T 1.) Notice

that the amplitude (6.7) is non-Feynman: it is a nearly everywhere vanishing distribution

on the configuration space of fields rather than a smooth, complex-valued function with

absolute value 1. This fact is a direct consequence of incompleteness of the Lagrange anchor

discussed above.

Passing to the momentum representation, we get the generating functional of Green’s

functions

Z[P ] =

∫
DFΨ[F ]e

i

~

R
P ′∧ eF = e

i

~
W [P ] ,

W [P ] =

∫
1

2
Gd†P ′ ∧ ∗d†P ′ − F̄ ∧ ∗P ′ ,

(6.9)

where

F̄ = dGJ + ∗dGI (6.10)

is the mean electromagnetic field produced by the sources I and J . As with any free

theory, the mean field F̄ satisfies the classical equations of motion (6.1). One can also see

that the propagator 〈F (x)F (x′)〉 for the field F coincides with corresponding expression

〈dA(x)dA(x′)〉 in the Maxwell electrodynamics with action S[A] = 1
2

∫
dA ∧ ∗dA.

The probability amplitude (6.7) can also be arrived at by applying the augmentation

method. By definition, the augmentation fields are the sections of the bundle which is

dual to the dynamics bundle of the theory. So we introduce the 1-forms Ba, a = 1, 2; the

pairing between the equations of motion and augmentation fields is given by the integral∫
T a∧∗Ba. Since the constraints (6.4) are linear in fields and momenta, the action S[F,B]

of the augmented theory is at most quadratic in F and Ba. Specializing the general

formulas (5.34) and (5.35) to the case at hand, we find

S[F,B] =

∫
(d†F̃ − I) ∧ ∗B1 + (d†F − J) ∧ ∗B2 +

1

2
dB2 ∧ ∗dB2. (6.11)

The Noether identities between the original equations of motion (6.1) give rise to the gauge

invariance of the action (6.11):

δεBa = dεa , a = 1, 2 . (6.12)

We can fix this arbitrariness by imposing the Lorentz gauges d†Ba = 0 on the augmentation

fields and adding these constraints to the action (6.11) with the Lagrange multipliers Ca.
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Then the gauge-fixed action reads

Sgf [F,B,C] = S[F,B] +

∫
d†Ba ∧ ∗Ca . (6.13)

According to Proposition 5.4, the (non-Feynman) probability amplitude (6.7) admits the

following path-integral representation in terms of the local action (6.13):

Ψ[F ] = (const)

∫
DBDCe

i

~
Sgf [F,B,C] (6.14)

Of course, in the case under consideration, one can verify the last equality directly, either by

calculating the Gauss integrals over B’s and C’s or substituting (6.14) into the Schwinger-

Dyson equation (6.6) and differentiating under the integral sign.

Given the probability amplitude (6.7), the quantum average of a physical observable

O is defined by the path integral

〈O〉 =

∫
DFO[F ]Ψ[F ] . (6.15)

In case I = 0, one can solve the constraint T 2 = d†F̃ ≈ 0 in terms of the gauge potential

A obeying the Lorentz gauge-fixing condition,

F = dA , d†A = 0 , (6.16)

and integrate the pre-exponential ∆-functional in (6.7) as

DCDF∆[d†F̃ + dC] → DAδ[d†A] . (6.17)

Then the integral (6.15) takes the form

〈O〉 =

∫
DAO[F (A)]Ψ[A] , (6.18)

where

Ψ[A] = δ[d†A] exp
i

~

∫
1

2
dA ∧ ∗dA + A ∧ ∗J (6.19)

is nothing but the usual probability amplitude for the electromagnetic field subject to the

Lorentz gauge.

6.2 Self-dual p-form fields

It has long been known that the quantization of chiral bosons in (4n+2)-dimensional space-

time is closely related with the quantization of Chern-Simons theory in the space-time with

one more dimension [14]. Roughly speaking, a physical wave-function of Chern-Simons

fields on a (4n + 3)-dimensional manifold M can be treated as a probability amplitude

(or partition function) for the self-dual fields living on the boundary of M. For a recent

discussion of the relationship between self-dual fields and the Chern-Simons theory we refer

the reader to [15]. Below we justify and reinterpret this ad hoc quantization technique

within the general method of sections 4 and 5.
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Our starting point is the Chern-Simons action for the (2n+1)-form field F ∈ Λ2n+1(M)

on a (4n + 3)-dimensional manifold M

S = −
1

2

∫

M

F ∧ DF , (6.20)

D being the exterior differential on M. Assume that M = M×I, where I = [0, 1] ⊂ R and

M is a compact (4n + 2)-dimensional manifold without boundary. Then ∂M = M ∪ M .

Using the product structure of the manifold M, one can globally decompose the field

F and the operator D as

F = H + B ∧ dt , D = dt ∧ ∂t + d , (6.21)

Here H ∈ Λ2n+1(M) and B ∈ Λ2n(M) are the one-parameter families of differential forms

labelled by t ∈ [0, 1] and d is the exterior differential on M . In this notation, the ac-

tion (6.20) takes a simple Hamiltonian form (3.17), if one identifies t with evolution pa-

rameter:

S =

∫

I

dt

∫

M

(
1

2
H ∧ Ḣ − B ∧ dH

)
. (6.22)

The fist term in (6.22) defines (and is defined by) a symplectic structure on Λ2n+1(M); the

corresponding symplectic 2-form reads

ω =

∫

M

δH ∧ δH . (6.23)

The field B plays the role of the Lagrange multiplier to the first-class constraints

T = dH ≈ 0 . (6.24)

It is convenient to treat T as a linear functional (de Rham’s flux) on the space of 2n-forms:

T [α] =

∫

M

α ∧ dH , ∀α ∈ Λ2n(M) . (6.25)

Then one can easily check that the constraints (6.24) have vanishing Poisson brackets,

{T [α], T [β]} =

∫

M

dα ∧ dβ = 0 , ∀α, β ∈ Λ2n(M). (6.26)

Since d2 = 0, these constraints are reducible, dT ≡ 0, and one can further deduce that

the order of reducibility is 2n.

The Hamiltonian reduction by the first-class constraints (6.24) leads to a finite dimen-

sional phase space. We have a rather explicit description of the reduced phase space due

to the Hodge decomposition

Λ2n+1(M) = dΛ2n(M) ⊕ d†Λ2n+2(M) ⊕ Λ2n+1
H (M) . (6.27)

Here d† : Λm(M) → Λm−1(M) is the adjoint differential constructed by some Riemannian

metric on M , and Λ2n+1
H (M) is the subspace of harmonic forms. According to the Hodge
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theory, the space Λ2n+1
H (M) is naturally isomorphic to the de Rham cohomology group

H2n+1(M). The first-class constraints (6.24) single out the coisotropic subspace of d-closed

forms, whose complementary isotropic subspace is given by the d†-exact forms. Notice that

both these subspaces are Lagrangian iff H2n+1(M) = 0.

The Hamiltonian flux generated by the first-class constraints changes any (2n+1)-form

H by an exact one:

δεH = {H,T [ε]} = dε . (6.28)

Taking the quotient of d-closed (2n+1)-forms by d-exact ones, we obtain the physical phase

space of the model, which is apparently isomorphic to the (finite dimensional) subspace of

harmonic forms on M :

Λ2n+1(M)//T ' Λ2n+1
H (M) ' H2n+1(M) . (6.29)

We are lead to conclude that the model under consideration is not topological unless

H2n+1(M) = 0. (We define a topological theory as a theory without physical degrees of

freedom.) To get rid of the physical modes and obtain a pure topological model we can

restrict the dynamics on the affine subspace Λ2n+1
α (M) ⊂ Λ2n+1(M) constituted by the

forms H = Hα + H0, where H0 ∈ dΛ2n(M) ⊕ d†Λ2n+2(M) and Hα is a time-independent

harmonic (2n + 1)-form representing the de Rham class α = [Hα] ∈ H2n+1(M). This

restriction is compatible with dynamics. Indeed, the equations of motion following from

the Hamiltonian action (6.22) read

Ḣ = dB , dH = 0 . (6.30)

So, the de Rham class [H] of the closed form H does not change with time and

can thus be regarded as a (topological) integral of motion. Moreover, the embedding

Λ2n+1
α (M) ⊂ Λ2n+1(M) is symplectic, i.e., the restriction of the 2-form (6.23) to Λ2n+1

α (M)

is nondegenerate.

To further proceed with the interpretation and quantization of the Chern-Simons the-

ory on the product manifold M = M × I, let us endow M with a Lorentzian metric. (A

necessary and sufficient condition for such a metric to exist is that the Euler characteristic

χ(M) be zero.) Then, the corresponding Hodge operator ∗ squares to +1 on the middle

forms so that any (2n+1)-form H admits a unique decomposition in the sum of its self-dual

and anti-self-dual parts:

H = H+ + H− , ∗H± = ±H± . (6.31)

Since ω(δH±, δH±) = 0, we have a natural polarization of the phase space Λ2n+1(M) given

by the two complementary Lagrangian subspaces of self- and anti-self-dual forms:

Λ2n+1(M) = Λ2n+1
+ (M) ⊕ Λ2n+1

− (M) . (6.32)

Let us regard the fields H− as the “momentum coordinates” canonically conjugate to

the “position coordinates” H+ and rewrite the Hamiltonian action (6.22) as

S =

∫

I

dt

∫

M

H− ∧ Ḣ+ − B ∧ d(H+ + H−) (6.33)
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Upon restriction to Λ2n+1
α (M) this action describes a topological field theory and its form is

identical to the form of the topological action (3.17). Recall that the latter was constructed

on general grounds starting from some classical (not necessarily Lagrangian) equations of

motion supplemented with an appropriate Lagrange structure. Proceeding now backward,

we can readily reinterpret the topological model (6.33) in terms of non-Lagrangian dynam-

ics on M .

Namely, the classical equations of motion are to be identified with the momentum

independent terms in the Hamiltonian constraints

T = d(H+ + H−) ≈ 0 . (6.34)

With our choice of the phase-space polarization this yields the closedness condition for the

self-dual form H+,

dH+ = 0 . (6.35)

Similar to the Hamiltonian constraints (6.34), these equations are 2n-times reducible, and

hence they define a regular gauge theory of type (0, 2n) (although there is no gauge invari-

ance in the usual sense). A non-Lagrangian nature of equations (6.35) was discussed at

length in [13].

The second term in the Hamiltonian constraints (6.34), namely dH−, is linear in mo-

menta and should be identified with the Lagrange anchor. Zero boundary conditions (3.19)

on the momenta

H−|t=0,1 = 0 (6.36)

ensure the equivalence of the classical dynamics (6.30) and (6.35), where both H and H+

belong to Λ2n+1
α (M). Fixing the de Rham class [H+] = α of a solution to equation (6.35) is

quite similar to fixing the boundary conditions for a field theory on a bounded space-time

domain.

Quantizing now the Hamiltonian constraints (6.34) in the coordinate representation,

we get the following Schwinger-Dyson operator:

T̂ = d

(
H+ − i~

δ

δH ′+

)
. (6.37)

Here H ′+ is the bivector on M obtained from H+ by rising indices with the help of the

Lorentzian metric. The probability amplitude on the configuration space Λ2n+1
α (M) ∩

Λ2n+1
+ (M) is determined by the equation

T̂Ψ[H+] = 0 . (6.38)

We use the augmentation method to write down an explicit path-integral representa-

tion for Ψ[H+]. To this end, we introduce the augmentation fields C ∈ Λ2n(M) whose

configuration space is dual to the linear space Λ2n+2(M) of the field equations (6.35), and

apply the general formulas (5.34), (5.35), and (5.37) to construct the Feynman probability
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amplitude of the augmented theory. The result is almost obvious:

Ψ[C,H+] = e
i

~
S[C,H+] ,

S[C,H+] =

∫
−

1

2
dC ∧ ∗dC + H+ ∧ dC .

(6.39)

The corresponding equations of motion read

dH+ = 0 , (dC)− = 0 . (6.40)

The augmented theory is seen to describe the pair of self-dual fields: one in terms of the

“strength tensor” H+ and another one in terms of the “gauge potential” C. Notice that

the Noether identities for the non-Lagrangian equations of motion (6.35), i.e., d(dH+) ≡ 0,

reincarnate as the gauge transformations of the augmentation fields:

C → C ′ = C + dA , ∀A ∈ Λ2n−1(M) . (6.41)

Integrating formally the amplitude (6.39) over the fields C, we obtain the probability

amplitude for the self-dual field H+,

Ψ[H+] =

∫
DCΨ[C,H+] . (6.42)

It is now just a matter of differentiating under the integral sign to show that the ampli-

tude (6.42) does obey the Schwinger-Dyson equation (6.38). We have

T̂Ψ[H+] =

∫
DCT̂e

i

~
S[C,H+] = i~ ∗

∫
DC

δ

δC
e

i

~
S[C,H+] = 0 . (6.43)

A more rigor treatment of the (divergent) Gaussian integral (6.42) implies fixing the gauge

freedom (6.41) by the BV method for reducible gauge-algebra generators [5, 6].
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